Phyto-Phospholipid Complexes: Innovative Approach to Enhance the Bioavailability and Therapeutic Efficacy of Herbal Extract

Anju Singh*, Avishikta Ray, Rakhi Mishra, Pramod K. Biswal, Reenu Yadav, Shailesh Kumar Ghatuary

Bhabha Pharmacy Research Institute, Hoshangabad Road, Bhopal-462047 (MP), India

Abstract

The herbal drug are used extensively for the treatment of the various diseases by the globe. The minimum side effects of medicinal plants attract people for its medicinal uses. The conventional dosage form of herbal medicine has certain limitation like low absorption, reduced bioavailability and lower penetration across biological membrane, it decrease their uses. Hence the introduction of novel drug delivery system namely Phyto-Phospholipid Complexes techniques resolve all these issues of herbal extract or plant actives. This advance technology technique reduced dose to produce desired therapeutic effect, improved stability due to chemical linkage, ability to permeate through skin systematic targeting to transit from hydrophilic to lipophilic environment an improved pharmacokinetic parameters. This review summarizes the latest investigations regarding the possible application of Phytosomes complexes for therapy of different diseasees, their marketed formulation, mechanism of transportation through phytosome and future prospect. The prospectus of Phytosomes technique can suggest new directions and endless frontier as novel drug treatment.

Keywords: Phyto-Phospholipid Complexes, Extract, Phytoconstituents, Phytosomes

Corresponding Author:
E-mail : anjukashsingh@gmail.com
Mob.: +9182353851792

1 Introduction

Presently demand of herbal medicines are enhanced in worldwide due to their safety, efficacy and folk acceptability. It has been realized that the herbal medicines have better compatibility with the human body since the chemical constituents present in them are a part of the physiological functions of living flora. The chemical constituents present in the medicinal plants imparts the therapeutic effect of the plant. In spite of the better therapeutic efficacy, the herbal medicine has certain limitation for the drug delivery, and higher doses required for the healing of diseases. The improvement in the field of herbal drug delivery was established with the objective to manage human disease more efficiently. Generally the plant actives demonstrated poor bioavailability due to their greater molecular size, and solubility property. Further, poor lipid solubility of bioactive component exhibit the partial capability to cross the biological membranes. The novel drug delivery system are design in such a way that it deliver the drugs with improved bioavailability and release of drug in the controlled manner. The novel drug delivery system minimize the drug metabolism of active constituents and deliver the drug directly to targeted cells. This can improve the the bioavailability of extract by increasing their concentration at targeted cell and also minimizing the side effects arising due to the accumulation of drugs to the non-targeted areas.

The effective distribution of phytoconstituents can be accomplished by the help of novel drug delivery technology. The plant extract or phytoconstituents are incorporated in a suitable vesicle carrier for their efficient dissemination into the body. This mechanism aids in increasing solubility, stability, protection from toxicity, pharmacological activity and sustained delivery. The vesicular systems applied as a pharmaceutical carriers are such as liposomes, Phytosomes, nanostructure lipid carriers, solid lipid nanoparticles, niosomes, transfersomes, aquasomes, etc. The vesicular system consists of one or more concentric lipid bilayer, in which the amphiphilic blocks are confronted with water. The
lipid based vesicular system improved retention and biodistribution of drug due to their nano size. In addition the nano size carrier enhanced the drug pharmacokinetic, pharmacodynamic and in vitro stability due accumulation of drugs at preferably at the targeted site, this subsequently increases biodistribution and retention effect of drugs.8–10.

Phyto-Phospholipid Complexes is referred as Phytosomes and is prepared by using the phospholipids and forming the complex between phytoconstituents or extract and phospholipids (Fig 1). It is advanced herbal drug delivery system, has outlined the vague bioavailability of lipid insoluble plant actives. Lipid insoluble herbal extracts can be redesigned into lipid compatible therapeutic candidate by chemically assimilating herbal extracts into phospholipids in specific ratio.11. Cellular vesicles produced by phytosome methods avoid the destruction of water soluble active constituents by gastric secretion and microflora of gut. The active constituents complexes with phospholipid has different benefits like hepatoprotective action, reduced dose to produce desired therapeutic effect, improved stability due to chemical linkage, ability to permeate through skin systematic targeting to transit from hydrophilic to lipophilic environment has revolutionized the phytomedicine industry.12–15. The Phyto-Phospholipid Complexes has resolved the limitation of therapeutic efficacy arising due to poor solubility and permeability of large size hydrophilic phytoconstituents across biological membranes. The present work highlights the importance and research prospects of Phyto-Phospholipid Complexes of plant actives.

Fig 1: Structure of Phyto-Phospholipid Complexes

2 Advantages of Phyto-Phospholipid Complexes

- Protecting drug from degradation
- Protection of drugs through biological interactions, and easily cross the membrane
- Increased the drugs pharmacokinetic and pharmacodynamic properties
- Increase the concentration of drug at the site of action
- Rate of drug release can be controlled
- Provide higher stability of extract
- Improved absorption of lipid insoluble extract orally as well as topically
- Improved drug entrapment efficiency
- As the absorption of active component is improved, its small dose can produce desired results.
- Formulation is easy as there is no problem in drug entrapment.
- Phytosomes are more useful than liposomes in skin care products.
- Phytosomes have significantly greater clinical benefit

3 Possible Mechanism of Phyto-Phospholipid Complexes

The reduced absorption of the extract or phytoconstituents is due to larger molecule size and poor miscibility with oils or other lipids. The larger size of active constituents are not absorbed from the intestine into the blood by simple diffusion. Further, the lipid insoluble property of active constituents limits their capability to permit across the lipid-rich outer biological membranes of the small intestine incorporating enterocytes cell. The Phyto-Phospholipid Complexes developed to resolve these challenges and improved the bioavailability. The Phyto-Phospholipid Complexes are produced by reacting particular quantity of the phospholipid (phosphatidylcholine) with the extract or phytoconstituents (like simple flavonoids) in a non polar solvent. Phosphatidylcholine has bifunctional properties, the phosphatidyl moiety being lipophilic and the choline moiety being hydrophilic in nature. Precisely the choline head of the phosphatidylcholine molecule binds to these extract or phytoconstituents while the lipid soluble phosphatidyl portion comprising the body and tail which then surround the choline bound material. Consequently, the extract or phytoconstituents yield a lipid compatible molecular complex with phospholipids, also called as phyto-phospholipid complex. The chemical investigation demonstrate the unit phytosome is usually a plant active linked with at least one phosphatidylcholine molecule. The subsequent phyto-phospholipid complex is like a little microsphere or cell which easily cross the intestinal membrane and enhance the bioavailability of drug (Fig 2).16.

4 Reported improved bioavailability of Phyto-Phospholipid Complexes

Pharm & Biosci J. 2020: 8(4); 2
The smaller size and lipophilic properties of Phytosomes are responsible to enhance the bioavailability of drugs. The numerous researchers scientifically documented the Phyto-Phospholipid Complexes better therapeutic and pharmacokinetic parameters compared to conventional dosage form. Some findings has been illustrated below:

Karole et al. (2019) reported Phytosomes of ethanol extract of Bombax ceiba produced better results of solubility study, entrapment efficiency, transition temperature, particle size and size distribution, optical microscopic study, zeta potential, transmission electron microscopy, stability studies and in vitro dissolution studies. The finding demonstrated synergistic antioxidant activity of phytosomes compared to individual extract.

Fig 2: Possible Mechanism of Phyto-Phospholipid Complexes

Rathee et al. (2018) prepared Phytosomes of the fruits of Citrullus colocynthis (L.), Momordica balsamina and Momordica dioica extracts. Phytosomes were found to have antidiabetic activity comparable to metformin in low dose. HPTLC showed the presence of the phyto-constituent quercetin.

Ittadwar et al. (2017) developed a novel formulation (Phytosome) of umbelliferone with phospholipid to improved permeability, solubility and hence better pharmacological action. The phytosomal complex was found to show better solubility in the water phase and oil phase, better permeation, better antioxidant activity and a better photo-protective activity when compared to umbelliferone.

Vankudri et al. (2016) prepared Phytosomes of rutin by phospholipid complex and evaluated for anti-diabetic activity. The findings demonstrated that the therapeutic efficacy of rutin Phytosomes enhanced compared to pure rutin.

Udapurkar et al. (2016) reported the applicability of Phyto-phospholipid complex vesicles for phytoconstituents and herbal extracts.

Patil et al. (2016) documented the improved bioavailability of phytoconstituents incorporated into phospholipid complex.

Sharma and Sahu (2016) formulated and characterized phytosomes containing ethanolic extract of Abutilon indicum and Piper longum. The formulation exhibited better therapeutic effectiveness.

Saoji et al. (2016) formulated phospholipid-based complex of Standardized Centella Extract for the enhanced delivery of phytoconstituents. Thus, drug-phospholipid complexation appears to be a promising strategy to improve the aqueous solubility and bioavailability of bioactive phytoconstituents.

Vora et al. (2015) prepared and characterized standardized pomegranate extract-phospholipid complex as an effective drug delivery tool. Increased n-octanol solubility of the complex proved its increased lipophilicity. Dissolution studies revealed that the phospholipid covering may prevent the punicalagins to be released in gastrointestinal tract, thus preventing their colonic microbial degradation.

Bhosale et al. (2015) documented the use and application of herbosomes as a novel drug delivery system for absorption enhancement.

Zahra et al. (2015) formulated Rutin-loaded Nanophytosomes, and findings indicate enhanced pharmacological activity.

Dhase et al. (2015) prepared and evaluated Phytosomes containing methanolic extract of leaves of Aegle Marmelos (Bael). The pharmacological activity of Phytosomes was increased compared to crude extracts.
Zhang et al. (2014) prepared and evaluated the Solid dispersion of berberine phospholipid complex/TPGS1000/SiO$_2$. The therapeutic efficacy of formulations was found to be increased29.

Abubakar et al. (2014) reported the effect of Phytochemical Constituents and Hypoglycemic Effect of Aqueous and Ethanolic Extracts of _MurrayaKoenigii_ in Alloxan-Induced Diabetic Rats30.

Gauttam and Kalia (2013) developed a phospholipids encapsulated polyherbal anti-diabetic formulation. In these study reported that the Phytococonstituents, despite having excellent bioactivity in vitro demonstrate less or no in vivo actions due to their poor lipid solubility, resulting in high therapeutic dose regimen; phospholipids encapsulation can overcome this problem31.

Khan et al. (2013) studied the advances and future prospects of phyto-phospholipid complexation technique for improving pharmacokinetic profile of plant actives32.

Raihan et al. (2012) evaluated the Antihyperglycemic Activity of Herbal Formulations on Alloxan Induced Diabetic Rats. The herbal formulations exhibited significant antidiabetic activity33.

Zaveri et al. (2011) prepared and evaluated drug phospholipids complex for increasing transdermal penetration of phyto constituents34.

Kidd et al. (2009) described the bioavailability and pharmacological activity of Phytosome Complexes from Botanical Polyphenols namely Silymarin, Curcumin, Green Tea, and Grape seed extracts35.

Bhattacharya (2009) worked on phytosome technology which enhances the bioavailability of herbal extracts. In Phytosomes technology the individual components of an herbal extract are bound to phosphatidylcholine. The emerging technology of drug delivery is being applied to phyto-pharmaceutical for the improvement of bioavailability of herbal extracts for medicinal applications36.

Naik et al. (2008) performed study on Hepatoprotective effect of _Ginkgo select Phytosome®_ in rifampicin induced liver injury rats and found significant Hepatoprotective activity in a dose dependent manner37.

Sikanwar et al. (2007) evaluated Marsupsin–Phospholipid Complex to enhance its therapeutic activity. The outcomes demonstrated improved therapeutic activity38.

5 Bioavailability Enhanced by Phyto-Phospholipid Complexes

Multiple studies have revealed that phyto-phospholipid complexes can boost the absorption of through oral topical route, hence it can increase the bioavailability and reduce the required dose. So, it can significantly improve therapeutic benefit (Table 1).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>T_{max} (h)</th>
<th>C_{max} (ng/ml)</th>
<th>AUC$_{0-24}$ (ng/h/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-OCH$_3$-PPD</td>
<td>2.25</td>
<td>7.18</td>
<td>26.65</td>
</tr>
<tr>
<td>25-OCH$_3$-PPD-PC</td>
<td>2.10</td>
<td>28.07</td>
<td>97.24</td>
</tr>
<tr>
<td>Quercetin (103)</td>
<td>0.50</td>
<td>0.67</td>
<td>2.04</td>
</tr>
<tr>
<td>Quercetin-PC (103)</td>
<td>0.75</td>
<td>1.58</td>
<td>8.12</td>
</tr>
<tr>
<td>Quercetin</td>
<td>1.21</td>
<td>179.21</td>
<td>1368.26</td>
</tr>
<tr>
<td>Quercetin-PC</td>
<td>1.02</td>
<td>724.89</td>
<td>3321.05</td>
</tr>
<tr>
<td>Kaempferol</td>
<td>6.32</td>
<td>180.23</td>
<td>1139.59</td>
</tr>
<tr>
<td>Kaempferol-PC</td>
<td>5.83</td>
<td>323.56</td>
<td>2228.21</td>
</tr>
<tr>
<td>Isorhamnetin</td>
<td>7.21</td>
<td>195.96</td>
<td>1153.66</td>
</tr>
<tr>
<td>Isorhamnetin-PC</td>
<td>4.32</td>
<td>672.29</td>
<td>2722.37</td>
</tr>
<tr>
<td>Luteolin</td>
<td>2.5</td>
<td>3410.0</td>
<td>10,420</td>
</tr>
<tr>
<td>Luteolin–PC</td>
<td>2.0</td>
<td>9770.0</td>
<td>55,790</td>
</tr>
<tr>
<td>Berberine</td>
<td>0.5</td>
<td>66.01</td>
<td>384.45</td>
</tr>
<tr>
<td>Berberine-PC</td>
<td>2.0</td>
<td>219.67</td>
<td>1169.19</td>
</tr>
<tr>
<td>Oleanolic acid (OA) Solidified</td>
<td>0.313</td>
<td>59.5</td>
<td>259.6</td>
</tr>
<tr>
<td>OA-PC</td>
<td>0.46</td>
<td>78.7</td>
<td>360.6</td>
</tr>
<tr>
<td>Rosuvastatin</td>
<td>1.94</td>
<td>183.95</td>
<td>671.56</td>
</tr>
<tr>
<td>Rosuvastatin–PC</td>
<td>1.41</td>
<td>674.17</td>
<td>2018.59</td>
</tr>
</tbody>
</table>

20(R)-25-methoxy-dammarane-3β,12β,20-triol - 25-OCH3-PPD, Phospholipid complexes - PC

6 Marketed Phytosomes products

Today advanced technology bring revolution in the Pharma domain. The Pharmaceutical industries are manufacturing novel drug delivery system for better therapeutic efficacy. In this concern now plant active are formulated in the form of Phytosomes and many products are available in the market. Commercially available registered Phytosomes products by various manufactures as summarized in Table 2 claims safe and synergistic therapeutic benefits in various pathological conditions.

7 Future prospects

The preparation Phytosomes with the extract or plant active has appeared as leading technique for the improvement of Pharmacokinetic and therapeutic efficacy of extract which have poor bioavailability. The phyto-phospholipid complex has been widely developed by researchers as a novel drug carrier for systemic action. But still the Phytosomes have certain limitation.
for its stability. Hence, it is prerequisite to explore research to resolve the issues of the preparation technique, stability and actual clinical superiority of these drug delivery systems. The use of hydrophilic solvents like ethanol in place of toxic organic solvent for the preparation of phyto-phospholipid complexes which increases their uses for clinical applications. The yield of the phyto-phospholipid complexes varied significantly in different studies from about 25% to more than 90% and has been attributed to different formulation factors like drug to phospholipid ratio, temperature and duration of processing that have shown to affect the yield of carrier system. This aspect of the formulation has to be considered in future research works to get the formulation of best quality. Further statistical tools like factorial design, spherical symmetric designing and others can be used for optimizing the molar ratios of drug with phospholipids, along with the temperature and other variables to get maximum entrapment efficiency and a superior drug release profile.

Table 2: Commercial available Phytosomes of various therapeutic application

<table>
<thead>
<tr>
<th>Biological Source</th>
<th>Commercial product</th>
<th>Therapeutic indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aesculus hippocastanum</td>
<td>Escin β sitosterol, Phytosome™</td>
<td>Anti-oedema and vasoactive properties</td>
</tr>
<tr>
<td>Ammi visnaga</td>
<td>Visnadex™</td>
<td>Improve microcirculation</td>
</tr>
<tr>
<td>Centella asiatica</td>
<td>Centella triterpenoid Phytosome™</td>
<td>Skin disorders, antiulcer, wound healing, anti-hair loss agent</td>
</tr>
<tr>
<td>Citrus aurantium</td>
<td>Naringenin Phytosome™</td>
<td>Antioxidant</td>
</tr>
<tr>
<td>Crategus oxyacanthoides</td>
<td>Hawthron Phytosome™</td>
<td>Nutraceutical, cardioprotective and antihypertensive</td>
</tr>
<tr>
<td>Cucurbita pepo</td>
<td>Cucurbita Phytosome™</td>
<td>Anti-inflammatory, Benign prostatic hyperplasia</td>
</tr>
<tr>
<td>Fraxinus ornus</td>
<td>Esculoside Phytosome™</td>
<td>Vasoactive, antcellulite</td>
</tr>
<tr>
<td>Gingko biloba</td>
<td>Gingko bilobatropene, Phytosome™ Gingko Bilobadimeric flavonoids Phytosome™</td>
<td>Raynaud’s disease, Antiageing, anti-asthmic, Antiamnestic, antidepressant, Cardioprotective, dermatitis, Anti-Inflammatory</td>
</tr>
<tr>
<td>Glycine max</td>
<td>Soyselect Phytosome™</td>
<td>Antiangiogenic, anticancer, cardioprotective, immunostimulatory and hypocholesterolemic</td>
</tr>
<tr>
<td>Glycyrrhiza glabra</td>
<td>Glycyrrhetic acid Phytosome™</td>
<td>Anti-inflammatory, used in dermatitis</td>
</tr>
<tr>
<td>Melilotus officinalis</td>
<td>Lymphaselect™</td>
<td>Anti-inflammatory, in oedema, thrombophlebitis</td>
</tr>
<tr>
<td>Olea europaea</td>
<td>Oleaselect Phytosome™</td>
<td>Antioxidant, antihyperlipidimic, anticancer and anti-inflammatory.</td>
</tr>
<tr>
<td>Panax ginseng</td>
<td>Ginseng Phytosome™</td>
<td>Nutraceutical, immunomodulatory</td>
</tr>
<tr>
<td>Panicum miliaceum</td>
<td>Millet Phytosome™</td>
<td>Antistress, beauty food for skin, nails and hairs</td>
</tr>
<tr>
<td>Curcuma longa</td>
<td>Curcumin Phytosome™, Curcuvet®(Meriva®)</td>
<td>Anti-inflammatory, osteoarthritis, anticancer</td>
</tr>
<tr>
<td>Camellia sinensis</td>
<td>Green tea Phytosome™</td>
<td>Nutraceutical, anticancer, Antioxidant, atherosclerosis, hepatoprotective, antidiabetic, anti-inflammatory</td>
</tr>
<tr>
<td>Echniacea angustifolia</td>
<td>Echniacea Phytosome™</td>
<td>Nutraceutical, immunomodulatory</td>
</tr>
<tr>
<td>Pinus maritime</td>
<td>Pycnogenol Phytosome™</td>
<td>Anti-inflammatory, antiwrinkle, Antiallergic</td>
</tr>
<tr>
<td>Radix puerariae</td>
<td>Puerarin and phospholipid complex</td>
<td>Antiinflammatory, cardiovascular diseases</td>
</tr>
</tbody>
</table>
Biological Source | **Commercial product** | **Therapeutic indications**
--- | --- | -----
Ruscus culeatus | Ruscogenin Phytosome™ | Anti-inflammatory, anti-ageing, Sunscreen agent
Santalum album | Ximiliene and Ximenoil Phytosome™ | Improve microcirculation
Serenoa repens | Phytosterols | Noncancerous prostate, Enlargement
Silybum marianum | Silybin Phytosome™ (Siliphos®) | Hepatoprotective, hepatitis, cirrhosis and inflammation
Swertia alternifolia | Swertia Phytosome™ | Antidiabetic
Syzzygium cumini | Madeglocyl Phytosome™ | Antihyperglycemic, anti-inflammatory, antioxidant
Terminalia serica | Sericoside | Anti-aging, skin restructuring
Vaccinium angustifolium | VitaBlue Phytosome™ | Anti-oxidant, improves vision, memory enhancer
Vaccinium myrtillus | Mirtoselect Phytosome™ | Antioxidants, antiinflammatory, vasoprotective
Vitis vinifera | Biovin and Leucoselect Masquiliers Phytosome™ | Cardioprotective, systemic antioxidant, nutraceutical
Zanthoxylum bungeanum | Zanthalene Phytosome™ | Soothing and Anti-reddening

There are numerous factors which govern the characteristic originality of Phytosomes in physical state such as physical size, membrane permeability, entrapment ratio, chemical constitution as well as the quantity and purity of the precursor starting chemical ingredients. The phyto-phospholipid complexes itself act as targeted carriers for tumor sites and reticuloendothelial system however this property can further be modified by controlling the particle size of the complexes.

8 Conclusion

Phyto-phospholipid complex technique has developed as progressive edge aspect in defining systemic absorption of extracts or plant actives. This technique has resolved the limitation of extract which decreased its bioavailability by reducing the size at nano level and making compatible with biological membrane of intestine. Further it enhance the lipid penetration at higher concentration with sustained and constant therapeutic levels in plasma, allows more quantity of plant active to reach at desired site of action. These novel drug delivery system can act as reliable candidates for improved drug dosage therapy.

9 Conflict of interest

None

10 Author’s contributions

AS, AR and RM carried out literature review, while PKB, RY and SKG draft the manuscript. All authors read and approved the final manuscript.

11 References

7. Lu W, Lin C, King TD, Chen H, Reynolds RC, Li Y. Silibinin inhibits Wnt/β-catenin signaling by suppressing Wnt co-receptor LR P6 expression in

30. Abubakar NA, Oise AE, Saidu AN. Phytochemical Constituents and Hypoglycemic Effect of Aqueous and Ethanolic Extracts of MurrayaKoenigii in Alloxan-
Induced Diabetic Rats. IOSR Journal of Dental and Medical Sciences. 2014; 13(9): 08-12.

