Assessment of Protective Effects of Extracts of *Zingiber officinale* and *Althaea officinalis* on Pyloric Ligation-Induced Gastric Ulcer in Experimental Animals

Sameh S. Zaghlool1*, Basim A. Shehata2, Ali A. Abo-Seif1 and Hekma A. Abd El-Latif3

1Pharmacology and Toxicology Department, Faculty of Pharmacy, Nahda University, BeniSueif-62111, Egypt
2Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Sueif University, BeniSueif-62111, Egypt
3Pharmacology and Toxicology Department, Faculty of Pharmacy, Umm Al-Qura University,Makkah-21955, KSA

Abstract

Gastric ulcer is one of the most gastro-intestinal disorders in world. There are many drugs used for the treatment of gastric ulcer, but most of these associates with several adverse effects. In the present study we investigate the protective effects of extracts of *Zingiber officinale* and *Althaea officinalis* on pyloric ligation-induced gastric ulcer in rats. Animals were divided into 5 groups; a normal control group, an ulcer control group, a standard treatment group receiving famotidine (20 mg/kg), and two treatment groups receiving Z. officinale extract (100 mg/kg) and A. officinalis extract (100 mg/kg). Treatments were given orally for 14 days. On the 15th day, animals were subjected to pyloric ligation except normal control group. Four hours later, rat stomachs were excised and gastric juice and blood samples were collected. Pyloric ligation significant increases ulcer number, ulcer index, gastric volume, titratable acidity, acid output, mucin content and peptic activity, accompanied by significant decreases in blood superoxide dismutase activity (SOD) activity and gastric mucosal nitric oxide (NO) and glutathione (GSH) contents. In addition, elevations in gastric mucosal lipid peroxide and histamine contents were observed. Pretreatment with famotidine, Z. officinale or A. officinalis extracts significantly corrected all blood and tissue parameters by varying degrees. Famotidine, Z. officinale and A. officinalis extracts may protect against pyloric ligation-induced peptic ulcer in rats, being promising for further clinical trials.

1 Introduction

Peptic ulcer is one of the world’s major gastro-intestinal disorders, embracing both gastric and duodenal ulcers, and affecting 10% of the world population11. The pathogenesis of peptic ulcer disease comprises a complex imbalance between gastric offensive factors like increased gastric acid and peptic secretion, *Helicobacter pylori* (H. Pylori) infection, bile salts, ethanol, medications like NSAIDs, and lipid peroxidation, and defensive mucosal factors like prostaglandins (PG’s), gastric mucus, cellular renovation, blood flow, mucosal cell shedding, glycoproteins, mucin secretion, proliferation and antioxidant defense mechanisms like catalase (CAT), superoxide dismutase (SOD), nitric oxide (NO) and glutathione (GSH) enhance the gastric secretion1.

Famotidine is an H2 receptor antagonist that inhibits acid production by reversibly competing with histamine for binding with H2 receptors located at the basolateral membrane of the parietal cells2,3. Histamine H2 receptor antagonists not only inhibit acid secretion induced by histamine, gastrin and cholinergic stimulation, but can also promote healing of ulcer4,5.

The use of phytoconstituents as drug therapy to treat major ailments has proved to be clinically effective and relatively less toxic than traditional drugs, based on their ability to reduce offensive factors, particularly oxidative stress6.

Zingiber officinale Roscoe (family: Zingiberaceae) is a herbal drug reported to stimulate digestion and absorption7 and to relieve constipation and flatulence by increasing muscular activity in the digestive tract8,9.

In folk medicine and literatures, *Althaea officinalis* L., (family: Malvaceae) was used in gastrointestinal disorders10. Aqueous A.
officinalis flower extract demonstrated a protection against ethanol-induced gastric ulcer. It has been shown that mucilage and flavonoids have the property of covering and protecting the gastric mucosa, thereby reducing the incidence of gastric ulcer11,12.

Based on the aforementioned data, the aim of the present study is to determine protective effects of \textit{Z. officinale} and \textit{A. officinalis} extracts on pyloric ligation-induced peptic ulcer in rats.

2 Materials and Methods

2.1 Drugs, chemical and reagent kits

All chemicals used in the study were of analytical grade. Famotidine was obtained as a gift from Amoun Pharmaceutical Industries Company “APIC”, Cairo, Egypt. Histamine reagent kit was obtained from Oxford Biomedical Research, Inc., USA. Malondialdehyde (MDA) reagent kit was obtained from Cell Biolabs, Inc., USA. NO reagent kit was obtained from Assay Designs, Inc., USA. GSH reagent kit was obtained from Cell Biolabs, Inc., USA. SOD reagent kit was obtained from Cell Biolabs, Inc., USA.

2.2 Plant materials

\textit{Z. officinale} and \textit{A. officinalis} were purchased from Haraz Company, Cairo, Egypt and were identified phytochemically14,15 by staff members of the Department of Pharmacognosy, Faculty of Pharmacy, Nahda University.

2.3 Preparation of extract

Aqueous extract of \textit{A. officinalis} was prepared by soaking the dried flowers of Marshmallow (1 kg) in hot water (85–90 °C) for half an hour, followed by filtration and drying of the filtrate under reduced pressure15, with a final yield of about 11.8%. The residue was dissolved in normal saline in a concentration of 100 mg/mL, and kept for oral administration.

Alcoholic extract of \textit{Z. officinale} was prepared by cutting rhizomes into small pieces that were completely dried in shed up for 3 – 4 days. Powder (1 kg) was obtained with the help of a mixer, and then extraction was done using 50 % ethanol (v/v). The homogenate was concentrated on rotavapour (IK® RV 10, Digital, 20 – 270 rpm – IK® HB 10, Basic, 0 – 180 °C – made in Germany). The residue was designated as ethanol extract (11.5 g). The extract was pre-solubilized in distilled water for the \textit{in vivo} studies15. The residue was dissolved in normal saline, 100 mg/mL, and prepared for oral use.

2.4 Animals

Adult male albino rats weighing 200 – 250 g were used in the present investigation. Animals were obtained from the animal house of Nahda University, Beni-Sueif and were kept under observation for about 15 days before the onset of the experiment to exclude any inter-current infection. The selected animals were housed in plastic cages with good aerated covers at 25±0.5 ℃ under 12 hour’s light/dark periods. Animals were allowed free access of water and were supplied daily with standard forage \textit{ad libitum}. All animal housing and handling were conducted in compliance with the Beni-Sueif University guidelines and in accordance with the research protocols established by the Animal Care Committee of the National Research Center (Cairo, Egypt) which followed the recommendations of the National Institutes of Health Guide for Care and Use of Laboratory Animals (Publication No. 85-23, revised 1985).

2.5 Experimental Design

Rats were randomly allocated into 5 groups, each consisting of 6 – 8 rats, where test drugs or vehicles were administrated by oral feeding tube once daily for 14 days prior to induction of ulcer. Group I received 10 ml/kg normal saline, p.o. and served as normal control group, Group II received 10 ml/kg normal saline, p.o. and served as peptic ulcer control group, Group III received Famotidine (20 mg/kg/day, p.o.)16,17 and served as standard treatment group, Group IV received \textit{Z. officinale} (100 mg/kg/day, p.o.)13,18, and Group V received \textit{A. officinalis} (100 mg/kg/day, p.o.)12.

2.6 Induction of peptic ulcer and sample preparation

On 15th day of drug or vehicle administration, animals were anaesthetized with urethane (1.25 g/kg, i.p.), carefully dissected and subjected to pyloric ligation19 except for the normal control group, after 36 hours of starvation. Four hours after pyloric ligation, animals were sacrificed by cervical dislocation under anesthesia. Stomachs were isolated and the gastric juice was collected and its volume was measured. Blood samples were collected from the retino-orbital sinus. The glandular portion of the stomach was then exposed and examined for macroscopic examination and ulcer index determination. Total acid output was estimated and gastric mucosal homogenates were prepared in normal saline.

2.7 Assessment of Gross Mucosal Damage

The gastric mucosal layer was carefully inspected for the occurrence of ulcers and their numbers were counted with the aid of an illuminated magnifying lens (10x)20,21. The sum of the total length of long ulcers and hemorrhagic spots in each group of rats were divided by the number of animals to calculate the ulcer index (mm). Ulcer index was calculated according to the method described by Cho and Ogie (1979)22. The preventive index was calculated according to the method described by Hano et al. (1976)23.

\[
\text{Preventive Index} = \frac{\text{Ulcer Index (Ulcer Control group)} - \text{Ulcer Index (Treated group)}}{\text{Ulcer Index (Ulcer Control group)}} \times 100
\]
2.8 Gastric Volume, Titratable Acidity, and Acid Output Determination

The collected gastric juice was centrifuged at 3000 g for 10 min and gastric volume (mL) was recorded after removal of solid debris. Samples having solid mass volumes more than 0.6 mL were discarded. Titratable acidity was carried out according to the method of Shay et al. (1954) and Grossman (1963) by titrating gastric juice against sodium hydroxide (0.01 N) using phenol red as an indicator. Acid output was calculated as the rate of the gastric juice production as microequivalents per 4 hours.

\[
\text{Acid Output (µEq/4hr)} = \frac{T \times V}{4}
\]

Where: (T) is titratable acidity (mEq/l) and (V) is collected volume of gastric juice (ml).

2.9 Peptic Activity Determination

Briefly, pepsin activity, the active principle proteolytic activity of gastric secretion was determined in terms of the amount of proteases produced after incubation of the substrate with pepsin for half an hour. The proteolytic activity of pepsin in gastric juice was determined spectrophotometrically at 280 nm.

2.10 Mucin Content Determination

The mucin content of the gastric juice was determined. Briefly, to diluted samples orcinol (1.6%) and sulphuric acid (60%) were added, vortexed and boiled for 10 min. Mixtures were cooled in ice-cold water to stop the reaction and the absorbance was measured spectrophotometrically at 425 nm.

2.11 Determination of gastric mucosal histamine

Histamine content of the gastric mucosa was determined using Enzyme Immunoassay for Histamine at 650 nm.

2.12 Determination of gastric mucosal GSH

The level of GSH was determined in stomach homogenate spectrophotometrically at 405 nm.

2.13 Determination of gastric mucosal lipid peroxides (MDA)

Lipid peroxides formation was determined in gastric mucosal homogenate spectrophotometrically at 532 nm.

2.14 Determination of gastric mucosal NO

Total NO concentration was determined in gastric mucosal homogenate spectrophotometrically at 540±20 nm.

2.15 Determination of blood SOD

SOD activity was determined in blood spectrophotometrically at 490 nm.

2.16 Histopathological examination of stomach

Hematoxylin and Eosin (H & E) were used for histological examination of the general structure of the stomach. The effect of drugs was evaluated through assessment of the inflammatory and necrotic changes in the mucosal tissue.

2.17 Statistical analysis

Statistical analysis and the significance of difference between group means were determined using one-way ANOVA test followed by Tukey-Kramer multiple comparisons test, using Graph Pad Instat computer software, San Diego, USA. Graphs and tables were performed using Microsoft Excel 2010 computer program.

3 Results

3.1 Preliminary phytochemical screening of extracts

The phytochemical screening of alcoholic extract of Z. officinale revealed the presence of carbohydrates, volatile oils, sterols, triterpenoids and alkaloids. The carbohydrates, volatile oils, tanins, flavonoids, and traces of saponins were found to be present in the aqueous extract of A. Officinalis.

3.2 Macroscopic examination (Ulcer number, ulcer index and preventive index)

Rats subjected to pyloric ligation (ulcer control rats) showed significant ulceration in the glandular area of their stomachs compared to normal control rats. Pretreatment with famotidine significantly reduced ulcer number and ulcer index to about 18.01% and 27%, respectively, compared to ulcer control group. Similarly, Z. officinale pretreatment significantly reduced ulcer number and ulcer index up to about 27.85% and 41.45%, respectively. In addition, A. Officinalis pretreatment significantly reduced ulcer number and ulcer index to about 39.37% and 44.6%, respectively (Fig. 1).

3.3 Gastric volume, titratable acidity and acid output

Rats subjected to pyloric ligation showed significant elevation in gastric volume, titratable acidity and acid output, reaching values of 1.75±0.37 ml/4h, 73.688 ± 6.26 mEq/L and 31.2±5.86 µE, respectively. Pretreatment with famotidine did not significantly change gastric volume but significantly decreased titratable acidity and acid output up to 27.37% and 23.14%, respectively compared to ulcer control group. Similarly, Z. officinale did not significantly affect gastric volume, titratable acidity and acid output compared to ulcer control group, but significantly increased titratable acidity and acid output up to 340.83% and 537.25%, respectively, compared to famotidine treated group. In addition, A. officinalis pretreatment did not significantly affect gastric volume, titratable acidity or acid output as compared to ulcer control group, but it significantly increased...
titratable acidity to 357.15% compared to famotidine (standard drug) treated group (Fig. 2).

3.4 Gastric acid secretion (Peptic activity and mucin concentration)

Rats subjected to pyloric ligation (ulcer control rats) showed increase in glycoprotein content and peptic activity as it was 2.74 ± 0.45 mg hexose/ml and 72.73 ± 0.635 mg/ml, respectively. Pretreatment with famotidine significantly decreased glycoprotein content and peptic activity to 21.53% and 87.47%, respectively as compared to ulcer control group. Similarly, Z. officinale pretreatment significantly decreased glycoprotein content and peptic activity up to 21.13% and 89.54%, respectively. In addition, A. officinalis pretreatment did not significantly affect glycoprotein content, but it significantly decreased peptic activity up to 93.8%. It also significantly increased glycoprotein content and peptic activity up to 337.28% and 107.23%, respectively as compared to famotidine (standard drug) treated group. Also it significantly increased glycoprotein content and peptic activity to 343.69% and 104.76%, respectively as compared to Z. officinale treated group (Fig. 3).

3.5 Superoxide Dismutase Activity

Rats subjected to pyloric ligation (ulcer control rats) showed significant decrease in SOD activity to 14.57% as compared to normal control rats. Pretreatment with famotidine significantly increased SOD activity up to 262.95% compared to the ulcer control group. Z. officinale pretreatment significantly increased SOD activity to 198.69%. Additionally, A. officinalis pretreatment did not significantly affect SOD activity as compared to ulcer control group but significantly decreased SOD activity to 52.12% as compared to famotidine (standard drug) treated group (Fig. 4).

3.6 Gastric mucosal tissues (Nitric oxide, Glutathione, Malondialdehyde and Histamine Content)

Rats subjected to pyloric ligation (ulcer control rats) showed significant decrease in GSH and NO content i.e. 15.52% and 17.81%, respectively and significantly increased MDA and histamine content up to 655.43% and 689.94%, respectively compared to normal control rats. Pretreatment with famotidine significantly increased GSH and NO content up to 289.77% and 387.56%, respectively and significantly decreased MDA and histamine content up to 27.72 % and 27.04 %, respectively compared to the ulcer control group. Z. officinale pretreatment significantly increased GSH content and NO content to 234.1% and 298.92%, respectively as compared to ulcer control group and significantly decreased NO content to 77.13% compared to famotidine (standard drug) treated group. It significantly decreased MDA and histamine content to 38.08% and 36.84%, respectively as compared to ulcer control group and significantly increased MDA content up to 137.38% compared to famotidine treated group. In addition, A. officinalis pretreatment did not significantly affect GSH or NO content compared to ulcer control group but it significantly decreased GSH and NO content up to 42.74% and 39.39%, respectively compared to famotidine (standard drug) treated group and it significantly decreased GSH and NO content to 52.91% and 51.07%, respectively as compared to Z. officinale treated group respectively. A. officinalis also significantly decreased MDA and histamine content up to 76.69% and 75.71%, respectively as compared to ulcer control group. It significantly increased MDA and histamine content to 276.68% and 279.94%, respectively as compared to famotidine (standard drug) treated group and significantly increased MDA and histamine content to 201.39% and 205.49%, respectively as compared to Z. officinale treated group (Table I).

3.7 Histopathological examinations

Figure 5a – 5e exhibited microscopic examination of stomach rats. Histopathological examination of normal control rats stomachs displayed normal basic layers of the fundus can be distinguished easily (Fig. 5a). Rats subjected to pyloric ligation (ulcer control rats) showed a severe disruption to the glandular epithelium and ulcer crater is clearly visible. Edema of the submucosal layer with lymphocytic infiltration was seen. Disrupted muscularis mucosa and inner circular layer of musculosa can also be noted (Fig. 5b). Pretreatment with Famotidine showed nearly normal gastric mucosa with a small area of atrophied surface epithelium and exfoliation of few cells. The intact muscularis mucosa can be seen (Fig. 5c). Z. officinale pretreatment showed that the damage was limited to the superficial epithelium with detachment of few cells and intact muscularis mucosa. Edema of submucosa was noticed (Fig. 5d). A. officinalis pretreatment showed severe disruption to the glandular epithelium. Edema of the submucosal layer with inflammatory cells can notice and disrupted muscularis mucosa. Inner circular layer and outer longitudinal layer of musculosa are clearly observed (Fig. 5e).

4 Discussions

Phytochemical screening of A. officinalis and Z. officinale were performed prior to work. The phytochemical screening of alcoholic extract of Z. officinale revealed the presence of carbohydrates, volatile oils, sterols and triterpenoids and alkaloids. The phytochemical screening of aqueous extract of A. officinalis revealed the presence of carbohydrates, volatile oils, tanins, flavonoids, and traces of saponins.

Current investigation revealed that pyloric ligation for 4 hours caused significant ulceration in the glandular area of the rat stomach as seen in histopathological examination. This was associated by marked increase in ulcer number and ulcer index. Pyloric ligation also showed increase in the gastric volume, titratable acidity and acid.
Table 1: Protective effects of 14 days daily treatment with Famotidine, *Z. officinale* and *A. officinalis* on Nitric Oxide, Glutathione, Malondialdehyde and Histamine in Pyloric Ligation-induced gastric ulceration in rats

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
<th>Glutathione</th>
<th>Nitric Oxide</th>
<th>Malondialdehyde</th>
<th>Histamine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>μmol/g tissue</td>
<td>% of control ulcer</td>
<td>μmol/g tissue</td>
<td>% of control ulcer</td>
</tr>
<tr>
<td>Group 1</td>
<td>Normal control</td>
<td>5.67± 0.28</td>
<td>644.32</td>
<td>182.77 ± 9.29</td>
<td>561.5</td>
</tr>
<tr>
<td>Group 2</td>
<td>Ulcer control(Pyloric ligated)</td>
<td>0.88± 0.04*</td>
<td>100</td>
<td>32.55 ± 2.52*</td>
<td>100</td>
</tr>
<tr>
<td>Group 3</td>
<td>Famotidine (20 mg/kg, p.o.)</td>
<td>2.55 ± 0.22@</td>
<td>289.77</td>
<td>126.15 ± 3.07@</td>
<td>387.56</td>
</tr>
<tr>
<td>Group 4</td>
<td>Z. officinale (100 mg/kg, p.o.)</td>
<td>2.06 ± 0.03@</td>
<td>234.1</td>
<td>97.3 ± 3.83@</td>
<td>298.92</td>
</tr>
<tr>
<td>Group 5</td>
<td>A. officinalis (100 mg/kg, p.o.)</td>
<td>1.09 ± 0.02#</td>
<td>123.86</td>
<td>49.7 ± 1.72#</td>
<td>152.69</td>
</tr>
</tbody>
</table>

Each value represents the mean of 6–8 animals ± standard error of the mean. Statistical analysis was determined using one – way ANOVA test followed by Tukey-Kramer multiple comparisons test. *Significantly different from normal control group (p<0.05). @Significantly different from ulcer control group (p<0.05). #Significantly different from famotidine (standard drug) treated group (p<0.05).

Fig. 1: Protective effects of 14 days daily treatment with Famotidine, *Z. officinale* and *A. officinalis* on Ulcer number, Ulcer Index and Preventive Index in Pyloric Ligation-induced gastric ulceration in rats. Each value of fig 1 represents the mean of 6–8 animals ± standard error of the mean. Statistical analysis was determined using one – way ANOVA test followed by Tukey-Kramer multiple comparisons test. *Significantly different from normal control group (p<0.05). @Significantly different from ulcer control group (p<0.05). #Significantly different from famotidine (standard drug) treated group (p<0.05).

Output. Similarly, pyloric ligation of rats for 4 hours resulted in accumulation of gastric secretory volume and increase in titrable acidity (reduction of pH of gastric juice) and gastric ulceration. An increase in glycoprotein content in gastric juice after pyloric ligation was observed. Pyloric ligation showed increase in pepsin activity. Similar results have been reported increase in the pepsin activity in the gastric juice after pyloric ligation. Pyloric ligation-induced ulcer was associated by oxidative stress as seen by increased MDA and decreased SOD and GSH. Bafna and Balaraman (2011) also observed a decrease in the activity of SOD in pyloric ligation model. Furthermore, pyloric ligation significantly increased histamine content. It has reported that gastric mucosal damage in the same model has been attributed to the decrease in mucosal defense due to starvation, increase in vagal discharge resulting in degranulation of mast cells and depletion of histamine in gastric tissue. Gastric ulcer induced by pyloric ligation is believed to be due to stress induced increased in gastric hydrochloric acid secretion and/or stasis of acid. The volume of secretion is also an important factor in the formation of ulcer due to exposure of the unprotected lumen of the stomach to the accumulating acid. Pyloric ligation – induced
gastric ulcers occurs because of an increase in acid-pepsin accumulation due to pyloric obstruction and subsequent mucosal digestion and breakdown of the gastric mucosal barrier.41, 45

Fig. 2: Protective effects of 14 days daily treatment with Famotidine, Z. officinale and A. officinalis on Gastric volume, Titratable acidity and Acid output in Pyloric Ligation-induced gastric ulceration in rats. Each value represents the mean of 6–8 animals ± standard error of the mean. Statistical analysis was determined using one – way ANOVA test followed by Tukey-Kramer multiple comparisons test. *Significantly different from normal control group (p<0.05), @Significantly different from ulcer control group (p<0.05). #Significantly different from famotidine (standard drug) treated group (p<0.05).

Oxidative stress plays an important role in the pathogenesis of various diseases including gastric ulcer, with antioxidants being reported to play a significant role in the protection of gastric mucosa against various necrotic agents.44 Reactive oxygen species are involved in the pathogenesis of pyloric ligation – induced gastric mucosal injury \textit{in vivo}.45 As compared to normal rats, pyloric ligation was found to increase lipid peroxidation and decrease SOD, CAT and GSH as compared to normal control groups, thus leading to oxidative stress. Preventive antioxidants, such as SOD and CAT enzymes are the first line of defense against reactive oxygen species.46 GSH is a major low molecular weight scavenger of free radicals in the cytoplasm and an important inhibitor of free radical mediated lipid peroxidation.44, 47 NO is an endogenous defensive factor for gastric cells and exhibits gastrotective properties against different types of aggressive agents.48 It is involved in the maintenance of mucosal integrity through the regulation of mucus and alkaline secretion, gastric motility and microcirculation.49

Fig. 3: Protective effects of 14 days daily treatment with Famotidine, Z. officinale and A. officinalis on Glycoprotein Content and Peptic Activity in Pyloric Ligation-induced gastric ulceration in rats. Each value represents the mean of 6–8 animals ± standard error of the mean. Statistical analysis was determined using one – way ANOVA test followed by Tukey-Kramer multiple comparisons test. *Significantly different from normal control group (p<0.05). @Significantly different from ulcer control group (p<0.05). #Significantly different from famotidine (standard drug) treated group (p<0.05).

Fig. 4: Protective effects of 14 days daily treatment with Famotidine, Z. officinale and A. officinalis on Superoxide Dismutase in Pyloric Ligation-induced gastric ulceration in rats. Each value represents the mean of 6–8 animals ± standard error of the mean. Statistical analysis was determined using one – way ANOVA test followed by Tukey-Kramer multiple comparisons test. *Significantly different from normal control group (p<0.05). @Significantly different from ulcer control group (p<0.05). #Significantly different from famotidine (standard drug) treated group (p<0.05).
NO is known to modulate acid levels, gastric mucus secretion, and blood flow in gastric tissues. NO has also been reported to prevent membrane lipid peroxidation50. NO can increase gastric blood flow and mucus secretion51.

Fig. 5a – 5e: Images from stomachs and Histopathological examination of each group

Fig 5a: Image from stomach and a photomicrograph of the fundus of group 1 normal control group. Fig. 5b: Image from stomach and a photomicrograph of the fundus of group 2 – peptic ulcer control group (pyloric ligated). Fig. 5c: Image from stomach and a photomicrograph of the fundus of group 3 – famotidine (20 mg/kg, p.o.). Fig. 5d: Image from stomach and a photomicrograph of the fundus of group 4 – Z. officinale (100 mg/kg, p.o.). Fig. 5e: Image from stomach and a photomicrograph of the fundus of group 5 – A. officinalis (100 mg/kg, p.o.). Where (white arrow) is lymphocytic infiltration or exfoliation of few cells, (black arrow) is the glandular mucosa, (•) is the submucosal layer, (MM) is the muscularis mucosa, (IC) is the inner circular layer of musculosa, and (OL) is outer longitudinal layer.
Gastric secretion in this model has been shown to be mediated through histamine and is inhibited by H$_2$ antagonists32,53. Results of the present study revealed that famotidine protected animals from pyloric ligation-induced gastric ulceration as manifested by significantly reduced ulcer number and ulcer index. It has been reported in aspirin and pyloric ligation induced gastric ulcer models that famotidine reduced the ulcer index thus showing the anti-secretory mechanism involved in the antiulcerogenic activity through H$_2$ receptors blockade34. Famotidine also significantly decreased titratable acidity and acid output after pyloric ligation. Significant decrease in peptic activity was also observed. The antiulcer activity of famotidine was associated by reduction of oxidative stress as observed by reduction of MDA and marked increase in SOD and GSH. Other study reported that famotidine normalized all the oxidative stress parameters (GSH, TBARS and SOD) in ethanol model, aspirin model and pyloric ligation model15. Famotidine significantly increased NO content in pyloric ligation. Similar result has observed an increase in the level of NO in stomach tissue from ranitidine treated rats55. NO levels have been shown to be reduced in damaged stomach tissue46. Famotidine significantly decreased histamine content in pyloric ligation, vagally induced gastric secretion in this model has been shown to be mediated through histamine and is inhibited by H$_2$ antagonists56. Therefore besides antagonizing H$_2$ receptors, Famotidine has also been shown to exhibit oxygen radical scavenging properties57.

Pretreatment with Z. officinale showed antiulcer activity as seen by significant reduction of the ulcer number and ulcer index after pyloric ligation. These results further support that obtained by Al-Yahya et al. (1989)50. Z. officinale significantly decreased glycoprotein content in gastric juice after pyloric ligation. Furthermore, Z. officinale extract significantly decreased peptic activity after pyloric ligation. In other study, Ethanol-induced depletion of gastric wall mucous has been significantly prevented by Z. officinale13. The antiulcer activity of Z. officinale was associated by reduction of oxidative stress as observed the significant decrease of MDA and increase in GSH and SOD after pyloric ligation. Z. officinale oil might act as a scavenger of oxygen radical and might be used as an antioxidant59. Likewise, recent study reported that Zingiber officinalis significantly decreased MDA level in cerebral cortex, striatum, and hippocampus60. Similarly, Zingiber officinalis increased the activity of SOD in cerebral cortex, hippocampus, and striatum60. One of the antiulcer activities of Z. officinale could be due to the observed reduction of histamine release.

A. officinalis pretreatment showed antiulcer activity as observed by significant reduction of the ulcer number, ulcer index and peptic activity after pyloric ligation. Furthermore, A. officinalis significantly reduced ulcer associated oxidative stress as manifested by significant decrease in MDA. Also histamine content was significantly decreased. Therefore the anti-ulcer effect of A. officinalis could be attributed to reduction of oxidative stress and histamine release. The gastro protective effect of A. officinalis observed could be attributed to active compounds found in the extract such as flavonoids and mucilage polysaccharides15. Althaea officinalis L. has a mucus protection (cytoprotection effect) and an antioxidant effect61.

According to the results of the present investigation, we can conclude that famotidine, Z. officinale and A. officinalis can protect against pyloric ligation induced ulcer.

5 Acknowledgments

This work was supported by its authors.

6 Competing interests

We have no conflict of interest.

7 Author’s contributions

SSZ carried out literature review and draft the manuscript, also participated in collection of data and arranged in tabular form. All authors read and approved the final manuscript.

8 References

41. Bhalke RD, Giri MA, Anarthe SJ, Pal S.C. Antiulcer activity of Emblica officinalis and Althaea officina